Sujet 1 (7 points) :

On demande de déterminer la matrice de rigidité globale (tenant compte des conditions de symétrie et des conditions aux limites) de la plaque carrée avec un trou carré (voir Fig.1). Le contour extérieur de la plaque est encastre sur AB et CD, et il est sur appui linéique continu sur AD et BC. Le contour intérieur (trou) de la plaque est en appui linéique sur tous les côtés. Grâce à la symétrie, on considère un quart de la plaque maillé avec trois éléments à 4 nœuds (3ddl par nœud). Voir la numérotation des nœuds à la Fig.1.

On rappelle que le cardinal de l'élément considéré :

\[[u] = \begin{bmatrix} \psi_1 & \psi_2 & \psi_3 & \psi_4 & \psi_5 & \psi_6 & \psi_7 & \psi_8 \end{bmatrix} \]

La matrice de rigidité relative (6 ddl) est donnée par :

\[[K] = \frac{1}{11a} \begin{bmatrix}
S_A & S_B & S_{SC} & S_{SD} & S_{SE} & S_{SF} \\
S_B & S_A & S_{SC} & S_{SD} & S_{SE} & S_{SF} \\
S_{SC} & S_{SC} & S_{SC} & S_{SC} & S_{SC} & S_{SC} \\
S_{SD} & S_{SD} & S_{SD} & S_{SD} & S_{SD} & S_{SD} \\
S_{SE} & S_{SE} & S_{SE} & S_{SE} & S_{SE} & S_{SE} \\
S_{SF} & S_{SF} & S_{SF} & S_{SF} & S_{SF} & S_{SF}
\end{bmatrix} \]

La matrice de rigidité globale est obtenue en superposant les matrices de rigidité de chaque élément.
Sujet 2 (7 points):

On analyse une structure 2-D maillée avec les éléments à 3 nœuds et 2 ddl par nœud (voir Fig. 2A). On connaît les matrices élémentaires de tous les éléments :

\[K_{ij}^e \quad i,j = 1,2, \ldots, 15 ; \quad e = 1,2, \ldots, 20 \]

La numérotation locale des nœuds de l'élément « e » est représentée à la Fig. 2B.

On demande d'écrire explicitement (en fonction des coefficients \(K_{ij}^e \)) les équations du système \(Ku = f \) relatives au nœud \(i \) seulement.
Sujet 3 (6 points)

Choisir la réponse correcte :

1. L'élément est isoparamétrique si
 A. les fonctions de forme utilisées sont linéaires.
 B. la géométrie de l'élément est décrite par les mêmes fonctions de forme qui
 sont utilisées pour discrétiser le champ de déplacement.

2. L'élément CST possède une caractéristique suivante :
 A. les contraintes sont constantes dans l'élément
 B. Les déplacements sont constants dans l'élément

3. L'approximation de la surface déformée w(x,y) de l'élément de plaque en flexion
 à 4 nœuds et 3 dël par nœud est :
 A. par un polynôme complet.
 B. par un polynôme incomplet.

4. Dans l'élément de solide de révolution à 3 nœuds et 2 dël par nœud, les
 contraintes sont :
 A. constantes dans l'élément.
 B. variables dans l'élément.

5. La méthode explicite d'analyse dynamique est :
 A. conditionnellement stable.
 B. inconditionnellement stable.

6. Dans la méthode des déformations initiales, l'écrouissage du matériau doit être :
 A. h = 0.
 B. h ≠ 0